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[1] Variability in precipitation regimes at seasonal and
longer time scales strongly influences ecosystem dynamics in
arid and semi-arid regions. In this paper, we use time series of
global precipitation and satellite normalized difference
vegetation index (NDVI) data to analyze joint spatial and
temporal variability between terrestrial ecosystems and
precipitation regimes. Accumulated monthly rainfall
anomalies are quantified using a standardized precipitation
index (SPI), which provides a better measure of ecologically
significant precipitation excess or deficit at growing season
time scales relative to monthly precipitation data. Results
from canonical correlation analysis reveal geographically
extensive patterns of joint NDVI-SPI variability suggestive
of strong climate-biosphere coupling. Further, leading modes
of covariability are shown to be related to large-scale ocean-
atmosphere circulation anomalies. These results illustrate the
global extent and sensitivity of ecosystems susceptible to
climate change-induced perturbations in precipitation
regimes. INDEX TERMS: 0315 Biosphere/atmosphere
interactions; 1854 Hydrology: Precipitation (3354); 1620 Global
Change: Climate dynamics (3309); 1640 Global Change: Remote
sensing. Citation: Lotsch, A., M. A. Friedl, B. T. Anderson, and
C.J. Tucker, Coupled vegetation-precipitation variability observed
from satellite and climate records, Geophys. Res. Lett., 30(14),
1774, doi:10.1029/2003GL017506, 2003.

1. Introduction

[2] Spatial and temporal patterns of biosphere-atmosphere
interactions, including fluxes of carbon, water and energy, are
intimately coupled to climate variability [Bonan, 2002], and
substantial evidence suggests that important changes in these
interactions will arise from projected climate change [Clarke
et al., 2001]. In particular, an enhanced global hydrologic
cycle is expected to produce more extreme rainfall events and
exacerbate naturally occurring droughts [Trenberth, 1998a].
In this context, geographic and seasonal patterns of vegeta-
tion-precipitation covariability has tremendous societal and
ecological significance [Stern and Easterling, 1999].

[3] Precipitation is a primary control on vegetation dy-
namics in many tropical and subtropical biomes, including
grasslands, savannas and forests. Climate induced distur-
bances in both the frequency and timing of precipitation
result in observable ecosystem responses [Knapp and Smith,
2001] and also influence ecosystem productivity and ter-
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restrial carbon sequestration [Nemani et al., 2002]. In arid
and semi-arid regions, soil moisture conditions provide a
mechanism for sustained plant growth beyond individual
rainfall events [Nicholson et al., 1990]. While long-term
average precipitation determines large-scale ecosystem and
species distributions, variation in growing season precipita-
tion can result in substantial inter- and intraannual variabil-
ity in plant structure and productivity [Woodward, 1987].

[4] In recent years remote sensing observations have
been used to examine the role of climate and climate
anomalies in large-scale ecosystem dynamics. Specifically,
the state and productivity of terrestrial ecosystems inferred
from satellite-based observations have been linked to global
atmospheric oscillation patterns [Los et al., 2001], sea
surface temperature (SST) anomalies [Myneni et al., 1996;
Anyamba et al., 2002], decadal scale trends in CO, and
temperatures [Myneni et al., 1997], interannual temperature
variability [Braswell et al., 1997], and atmospheric cooling
induced by aerosols [Lucht et al., 2002].

[s] While plot scale studies reflect local ecohydrological
conditions in vegetation-precipitation relations [Knapp and
Smith, 2001], remote sensing provides a means to monitor
geographically extensive patterns of coupled climate and
vegetation processes. In particular, times series of National
Oceanic and Atmospheric Administration (NOAA) Ad-
vanced Very High Resolution Radiometer (AVHRR) based
vegetation inventories provide high temporal sampling and
global geographic coverage suitable for studying large-scale
vegetation dynamics [Los et al., 2001]. The normalized
difference vegetation index (NDVI) derived from red and
near-infrared reflectances is proportional to the amount of
absorbed photosynthetically active radiation [Myneni et al.,
1995] and is closely coupled to net primary productivity
(NPP) and canopy structure [Tucker and Sellers, 1986]. In
regions where precipitation is limited, NDVI data derived
from satellites has been shown to be related to annually
integrated precipitation [Tucker and Nicholson, 1999].

2. Data

[6] In this paper we use global 232-month (19.3 years)
time series of precipitation and vegetation data to identify
statistically significant dynamics in ecosystems that are
related to seasonal and interannual variability in global
precipitation regimes. For this analysis, global gridded time
series of monthly NDVI derived from July 1981 to October
2000 NOAA-AVHRR data at 1 degree spatial resolution
serve as a surrogate for vegetation activity. These data have
been preprocessed to provide a spatially and temporally
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consistent representation of global vegetation for climate
studies [Tucker et al., 2003].

[7] Data from the Climate Prediction Center (CPC)
Merged Analysis of Precipitation (CMAP) is used to quan-
tify global patterns of ecologically significant water surplus
and deficit. This data set provides mean global daily
precipitation (mm/day) for each month from 1979 to 2001
at 2.5 degree spatial resolution. The CMAP data set is
produced by merging gauge observations, precipitation
estimates from five different satellite-based algorithms,
and output from numerical model predictions [Xie and
Arkin, 1997]. For this work, we converted the CMAP time
series at each grid point to values of the standardized
precipitation index (SPI) [McKee et al., 1993]. The SPI is
calculated from long-term precipitation records and pro-
vides a normalized and spatially invariant measure of
relative precipitation anomalies at multiple time scales.
The time scale is application-dependent and quantifies the
accumulated precipitation anomaly over a specified time
period leading up to and including the season of interest.

3. Analysis Techniques

[8] Prior to analyzing joint variability in NDVI and SPI
the seasonal cycle was removed from both data sets (Jseqson =
0) and an exploratory analysis was performed to determine
the appropriate time scale for computing the SPI. Figure 1
shows the average grid point correlation coefficients for
NDVI and SPI time series calculated for major land cover
classes at time scales of 1—12 months. These results show
that ecosystems in arid and semi-arid climate regimes (shrub-
lands, savannas, grasslands) are most sensitive to seasonal
precipitation anomalies at time scales of 4—6 months,
whereas forested land areas exhibit weak correlation with
rainfall anomalies at all time scales. This observation is
consistent with the concept of lagged vegetation response to
soil moisture anomalies in arid and semi-arid climate regions
[Nicholson et al., 1990]. Thus, the 5-month SPI was used for
subsequent analyses.

[o9] To study the joint variability of SPI and NDVI we
used linear canonical correlation analysis (CCA). CCA
estimates pairs of time series, taken from two multivariate
data sets, that are maximally correlated. The time series are
estimated using an eigenvalue decomposition of the cross-
covariance matrix of the two data sets [Bretherton et al.,
1992]. In this case, CCA computes linear combinations of
monthly NDVI that are maximally correlated with linear
combinations of SPI data. Specifically, since SPI reflects
seasonally integrated precipitation, correlation between SPI
and NDVI data are indicative of changes in vegetation
induced by rainfall anomalies. The results from CCA
include a set of canonical factors (CFs), which are time
series sorted by descending correlation. To focus the anal-
ysis on the dominant modes of covariability we performed
CCA using standardized, seasonal-mean and area-weighted
leading principal components [Barnett and Preisendorfer,
1987]. The results presented were estimated from 78 sea-
sonal means (i.e., 4 seasons per year) and were tested at a
5% significance level (» > +.22) using a two-tailed t-test.

4. Results and Discussion

[10] Monthly grid point correlation maps for 5-month
SPI and NDVI are shown in Figure 2. This map identifies
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Figure 1. Distribution of average grid point correlation
coefficients (y-axis) for 1—12 month SPI (x-axis) and NDVI
for land cover classes defined by the International Geo-
sphere Biosphere Programme. Monthly seasonal means
show the highest correlations for shrublands, savannas and
grasslands at growing season time scales (4—6 months).
Average monthly precipitation totals P,, (mm) and standard
deviations (in parenthesis) were calculated from 1979—-2000
CMAP monthly precipitation records.

regions in which seasonally integrated precipitation anom-
alies correlate with NDVI anomalies and highlights arid
and semi-arid climate regions. By using CCA, we are able
to expand this result to isolate correlated modes of joint
variability within the SPI and NDVI data sets. In particular,
at continental to global scales CCA reveals geographically
extensive patterns of joint NDVI-SPI variability that are
clearly related to joint variation in ecosystem-climate
dynamics.

[11] For brevity, only the leading modes (i.e., the modes
explaining the most covariance) of seasonal canonical
variability for North and South America, Africa and Aus-
tralia are shown (no significant patterns were found for
Eurasia). Figure 3 presents the CF time series (top) and
corresponding correlation maps for NDVI (middle) and SPI
(bottom). The eigenvalue, e, related to each mode is
equivalent to the correlation coefficient between the trans-
formed NDVI and SPI time series. The degree of associa-
tion is strong for all four subsets (0.69 < e < 0.79) and the
centers of action in each map are co-located, indicating
precipitation-related NDVI anomalies.

[12] Comparison of the CCA results with circulation
features (maps not shown) derived from the National Center
for Environmental Prediction (NCEP) reanalysis [Kalnay et
al.,, 1996] reveal well defined physical mechanisms that
explain the observed joint variation. Specifically, the lead-
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Figure 2. Significant grid point correlations (r > .22;
p = .05) for monthly seasonal averages of 5-month SPI and
NDVI. Positively correlated (red) areas suggest precipita-
tion-vegetation coupling, whereas negatively correlated
(blue) areas indicate snow or cloud cover effects.

ing mode for North America (e = .69) is characterized by
opposing patterns of precipitation between the western U.S.
and the southern great plains. Precipitation and NDVI
anomalies in the south-west are spatially coincident and
extend across northern central Mexico and southern parts of
Texas and New Mexico (Figure 3A). In contrast, precipita-
tion anomalies in the west (Sierra Nevada mountains and
Upper Colorado River basin) are displaced with respect to
the corresponding NDVI anomalies (southern Colorado
River basin and parts of the Central Valley). This displace-
ment reflects the response of irrigation patterns in southern
California and Arizona to variability in precipitation
regimes in the Sierra Nevada and Upper Colorado River
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Basin [Gollehon and Quinby, 2000]. Most of the variance in
this SPI-NDVI pattern is associated with springtime NDVI-
SPI variability. The SPI anomaly in this season, i.e. the
integrated rainfall anomalies over the previous 5 months,
are primarily related to rainfall anomalies in March—May
(MAM) and November—January (NDJ). Both MAM and
NDJ are associated with a large mid-latitude trough at
500mb height, extending from the Gulf of Alaska to the
eastern US with a ridge to the south extending from Hawaii
to central Mexico. In MAM, this ridge is associated with
negative anomalies in 500mb vertical velocities over west-
ern Mexico, and possibly a late arrival of the monsoon rains
to this region [Yu and Wallace, 2000]. In NDJ, the conti-
nental scale trough is related to a south-eastern shift of the
subtropical jet stream over the Gulf of Mexico with anom-
alous negative vertical velocities to the west of the entrance
region, resulting in decreased precipitation over central
Mexico. Excess precipitation in the western part of the
continent correlates with a southerly shift in the Pacific jet
stream related to large-scale circulation features over the
central/eastern tropical Pacific and the Gulf of Alaska
[Dettinger et al., 1998].

[13] Figure 3B shows South America’s leading mode
(e = .75), which has the highest variability in June—August
(JJA) and is characterized by a typical El-Nifio type
response pattern with two dipoles centered in north-eastern
Brazil and an area extending from southern Brazil to the
Argentinian pampas [Paegle and Mo, 2002]. SPI anomalies
in JJA arise from precipitation anomalies during the austral
late summer and fall (February—May). The SPI-NDVI
patterns correlate with 500mb vertical velocity anomalies
over these two regions and are related to warm waters in the

O = MW

[o]

¥
e=075

1985 1990 1995 2000

z 7 I ]
.IF § .a.ﬂ‘q " ‘{?_\Hk\b} |
| X ) R ]
[ s - Efr"‘ '
ML s - .

vee. = 4.3% (62.7%) v, = 4.4% (58.7%)

@ ’:‘e . 2
TR
IR S SR 4
% }h\-lv \'ﬂ_}:‘?‘}‘ﬂ‘ 1 Qg

ve = 9.7% (71.4%) v.e. = 15.2% (74.4%)

08

06

0.4

S 0.2
v.e. = 6.4% (52.0%) 0

e -'Ef‘;“- =04

falue DT -0.4

B A B n
& “?}. ] & 06
)
\ﬁ/a(ﬂ- -08

v.e. = 9.6% (60.0%) v.e = 245% (81.5%)

Figure 3. Leading canonical modes of joint SPI-NDVI variability for North America, South America, Africa and
Australia identified by CCA. (top panels: NDVI - solid line, SPI - dashed line). Middle panels and bottom panels show
correlation maps for NDVI and SPI, respectively. Only significant grid cells (» >. 22; p =.05) are shown. Each figure is
labeled with the amount (percentage) of variance explained (v.e.) by each component and the total amount of variance
included in the analysis (in parenthesis) using m leading principal components of NDVI and SPI (m = 10, except m = 7 for

Australia).
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eastern equatorial Pacific, along with cold Atlantic waters
off the Brazilian coast.

[14] The leading mode for Africa (e =.79) is characterized
by a dipole pattern with centers in southern Africa and the
horn of Africa (Figure 3C). Also, the Arabian peninsula and
parts of central Asia exhibit strong joint variability, with
December—February (DJF) showing the strongest correla-
tions. Positive summertime rainfall anomalies in southern
Africa are related to a south-westerly shift of the subtropical
high induced by La Nifia conditions over the eastern equa-
torial Pacific (e.g., 1984/85, 1994/95), which displaces the
summertime inter-tropical convergence zone (ITCZ) south-
ward. Anomalies in the horn of Africa are associated with
subsidence over the Indian ocean, extending over eastern
Africa. These conditions are related to La Nifia and cold SST
anomalies over the Indian ocean [Anyamba et al., 2002].

[15] The leading mode for Australia (e = .72) exhibits the
most variability in the austral spring (September—Novem-
ber) and arises largely from precipitation anomalies in the
previous winter (JJA), extending into spring (Figure 3D).
Rainfall anomalies in this season are associated with a
consistent pattern of tropospheric circulation anomalies over
Australia and the south-west Pacific. Specifically, winters
during the high index phase of the Southern Oscillation
(SO) are characterized by low sea level pressure centered
over Australia. This low pressure is associated with anom-
alies in 700mb meridional circulation over eastern Aus-
tralia, which causes a weakening of the local winter Hadley
circulation during positive SO events [Drosdowsky and
Williams, 1991]. As a result, dry south-easterly flow over
the northern part of the continent is weakened and moist
intrusions of tropical air masses into eastern Australia are
more frequent.

5. Conclusions

[16] In this paper we analyze the covariability of remotely
sensed NDVI and assimilated precipitation records. The
high degree of association between NDVI and 5-month
SPI time series indicate that SPI data capture ecologically
significant accumulated precipitation surplus or deficit. The
primary modes of joint temporal and spatial variability of
NDVI and SPI at continental scales indicate that interannual
variability in ecosystem dynamics in water limited regions
is tightly coupled to variability in precipitation regimes.
Further, comparison of canonical modes of variability in
NDVI and SPI with changes in both atmospheric dynamics
and circulation patterns show that the atmosphere functions
as a bridge that propagates oceanic and atmospheric anom-
alies across continental scales [Trenberth et al., 1998Db],
with important impacts on large-scale terrestrial ecosystems.
The degree of observed coupled behavior between NDVI
and SPI suggests that terrestrial ecosystems may be quite
sensitive to perturbations in global precipitation regimes
induced by climate change.
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Intelligent Data Understanding Program, Grant # NCC2-1245.
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